\(\dfrac{\sqrt{x}-2}{\sqrt{x}+8}\left(x\ge0\right)=\dfrac{\sqrt{x}+8-10}{\sqrt{x}+8}=1-\dfrac{10}{\sqrt{x}+8}\)
Để biểu thức nguyên thì \(10⋮\sqrt{x}+8\)
\(\Leftrightarrow\sqrt{x}+8\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-18;-13;-10;-9;-7;-6;-3;2\right\}\)
Mà \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}\in\left\{2\right\}\Leftrightarrow x=4\)
Với \(x\ge0\) có : \(\dfrac{\sqrt{x}-2}{\sqrt{x}+8}=\dfrac{\sqrt{x}+8-10}{\sqrt{x}+8}=1-\dfrac{10}{\sqrt{x}+8}\)
Để bthuc nhận gt nguyên thì :
\(\dfrac{10}{\sqrt{x}+8}\in Z\Leftrightarrow10⋮\sqrt{x}+8\) \(\Leftrightarrow\sqrt{x}+8\inƯ\left(10\right)\Leftrightarrow\sqrt{x}+8=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\sqrt{x}\ge0\) nên ta chỉ xét \(\sqrt{x}+8=\left\{1;2;5;10\right\}\)
Ta có bảng sau
\(\sqrt{x}+8\) | 1 | 2 | 5 | 10 |
\(\sqrt{x}\) | -7(loại) | -6(loại) | -3(loại) | 2 |
\(x\) | 4(thỏa mãn) |
Vậy x=4 là gtri cần tìm