\(\left(x-2,5\right)^4=\left(x=-2,5\right)^2\)
\(\Rightarrow\left(x-2,5\right)^6\)
\(\Rightarrow x-2,5=0\Rightarrow x=2,5\)
\(\left(x-2,5\right)^4=\left(x-2,5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-2,5=-1\\x-2,5=0\\x-2,5=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,5\\x=2,5\\x=3,5\end{matrix}\right.\)
Ta có: \(\left(x-\dfrac{5}{2}\right)^4=\left(x-\dfrac{5}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2\cdot\left(x-\dfrac{7}{2}\right)\left(x-\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{7}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)