`2x^2-x-6=0`
`<=>2x^2-4x+3x-6=0`
`<=>2x(x-2)+3(x-2)=0`
`<=>(x-2)(2x+3)=0`
`<=>[(x-2=0),(2x+3=0):}<=>[(x=2),(x=-3/2):}`
\(2x^2-4x+3x-6=0\\ 2x\left(x-2\right)+3\left(x-2\right)=0\\ \left(2x+3\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x+3=0\\x-2=0\end{matrix}\right.=>x=-\dfrac{3}{2};x=2\)
`2x^2 - x - 6 = 0`
`-> 2x^2 - 4x + 3x - 6 = 0`
`-> (x-2)(2x+3) = 0`
`->` \(\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
2x2 - x - 6 = 0
<=> (2x2 - 4x) + (3x - 6) = 0
<=> 2x(x - 2) + 3(x - 2) = 0
<=> (2x + 3)(x - 2) = 0
<=> 2x + 3 = 0 hoặc x - 2 = 0
\(\Leftrightarrow x=-\dfrac{3}{2}\) hoặc x = 2
Vậy phương trình có tập nghiệm là: \(S=\left\{-\dfrac{3}{2};2\right\}.\)