1: ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
2: ĐKXĐ: \(x\ne\dfrac{1}{2}\)
1: ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
2: ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Vẽ đồ thị các hàm số sau trên cùng 1 mặt phẳng tọa độ và tìm tọa độ giao điểm của 2 đường thẳng đó:
a) y = 2x và y = -3x + 5
b) y = 3x + 2 và y = \(-\dfrac{1}{2}x+1\)
c) y = \(\dfrac{3}{2}x-2\) và y = \(-\dfrac{1}{2}x\:+2\)
d) y = -2x + 5 và y = x + 2
Giải hpt
a)\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{3}{3x+y}-\dfrac{5}{2x-3y}=21\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Ghpt:
a) \(\left\{{}\begin{matrix}x^2+2y^2=2x-2xy+1\\3x^2+2xy-y^2=2x-y+5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4xy+4x^2+4y^2+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=3\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
y=\(\dfrac{2+3x}{\sqrt{5}}\)
y=\(\dfrac{3x+1}{2}-\dfrac{x-1}{3}\)
hàm số nào đồng biến hàm số nào nghịch biến trên R
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
1. Tìm max và min
a) \(A=\sqrt{x-3}+\sqrt{7-x}\)
b) \(B=\dfrac{3+8x^2+12x^4}{\left(1+2x^2\right)^2}\)
2. Cho \(36x^2+16y^2=9\)
\(CM:\dfrac{15}{4}\text{≤}y-2x+5\text{≤}\dfrac{25}{4}\)