Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Tiến Đạt

Tìm n biết:

a) \(\dfrac{32}{\left(-2\right)^n}=4\)

b) \(\dfrac{8}{2^n}\)\(=2\)

c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)

 

Trúc Giang
10 tháng 6 2021 lúc 15:00

a) \(\dfrac{32}{\left(-2\right)^n}=4\)

\(\Rightarrow\left(-2\right)^n=8=\left(-2\right)^3\)

=> n = 3

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow2^n=4=2^2\)

=> n = 2

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

=> 2n - 1 = 3

=> 2n = 4

=> n = 2

Giải:

a) \(\dfrac{32}{\left(-2\right)^n}=4\) 

\(\Rightarrow\left(-2\right)^n=32:4=8\) 

\(\Rightarrow\left(-2\right)^n=8\) 

Vì \(\left(-2\right)^n=2^3\) là ko thể nên n ∈ ∅

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2=4\) 

\(\Rightarrow2^n=4\) 

\(\Rightarrow2^n=2^2\) 

\(\Rightarrow n=2\) 

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\) 

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\) 

\(\Rightarrow2n-1=3\rightarrow n=2\)