1/4^2+1/6^2+...+1/(2n)^2<1/4
=>1/2^2+1/3^2+...+1/n^2<1
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n-1\right)}=\dfrac{1}{2}-\dfrac{1}{n-1}< 1\)
=>ĐPCM
1/4^2+1/6^2+...+1/(2n)^2<1/4
=>1/2^2+1/3^2+...+1/n^2<1
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{n\left(n-1\right)}=\dfrac{1}{2}-\dfrac{1}{n-1}< 1\)
=>ĐPCM
\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{8^2}\)+...+\(\dfrac{1}{\left(2n\right)^2}\)<\(\dfrac{1}{4}\)(nϵN,n≥2)
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
a, Tính: M = \(1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
b, Chứng tỏ: S = \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
Tìm n biết:
a) \(\dfrac{32}{\left(-2\right)^n}=4\)
b) \(\dfrac{8}{2^n}\)\(=2\)
c) \(\left(\dfrac{1}{2}\right)^{2n-1}\)\(=\dfrac{1}{8}\)
so sánh A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...\(\dfrac{1}{\left(2n\right)^2}\)với \(\dfrac{1}{2}\)
Thực hiện phép tính:
1, \(\left(\dfrac{-1}{2}\right)^2.\left|+8\right|-\left(-\dfrac{1}{2}\right)^3:\left|-\dfrac{1}{16}\right|\)
2, \(\left|-0,25\right|-\left(-\dfrac{3}{2}\right)^2:\dfrac{1}{4}+\dfrac{3}{4}.2017^0\)
3, \(\left|\dfrac{2}{3}-\dfrac{5}{6}\right|.\left(3,6:2\dfrac{2}{5}\right)^3\)
4, \(\left|\left(-0,5\right)^2+\dfrac{7}{2}\right|.10-\left(\dfrac{29}{30}-\dfrac{7}{15}\right):\left(-\dfrac{2017}{2018}\right)^0\)
5, \(\dfrac{8}{3}+\left(3-\dfrac{1}{2}\right)^2-\left|\dfrac{-7}{3}\right|\)
Tính giá trị biểu thức:
\(e,\dfrac{18}{37}+\dfrac{8}{24}+\dfrac{19}{37}-1\dfrac{23}{24}+\dfrac{2}{3}\)
\(f,\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(g,\left(\dfrac{2}{5}\right)^2+5\dfrac{1}{2}.\left(4,5-2\right)+\dfrac{2^3}{\left(-4\right)}\)
\(h,\dfrac{4}{9}.19\dfrac{1}{3}-\dfrac{4}{9}.39\dfrac{1}{3}\)
\(i,\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(j,125\%.\left(\dfrac{-1}{2}\right)^2:\left(1\dfrac{5}{16}-1,5\right)+2008^0\)
\(k,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
Bài 1.(2,5 điểm)Tìm x, biết:
a) \(\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right).x=-4\dfrac{1}{6}+3\dfrac{1}{2}\)
b) \(\left(1\dfrac{1}{3}+3\dfrac{1}{2}\right).x=4\dfrac{1}{6}-3\dfrac{1}{2}\)
c) \(\dfrac{1}{3}-\dfrac{7}{8}.x=\dfrac{1}{4}\)
d) \(\dfrac{3}{2}.x+\dfrac{1}{7}=\dfrac{7}{8}.\dfrac{64}{49}\)
e) \(5\dfrac{1}{2}-\left(\dfrac{1}{4}.x+\dfrac{2}{5}\right)=25\%\)
Tìm x, biết:
a) x+\(\dfrac{1}{6}\)=\(\dfrac{-3}{8}\) b) \(2-\left(\dfrac{3}{4}-x\right)=\dfrac{7}{12}\)
c) \(\dfrac{1}{2}x\)+\(\dfrac{1}{8}x=\dfrac{3}{4}\) d) 75%-\(1\dfrac{1}{2}+0,5:\dfrac{5}{12}-\left(\dfrac{-1}{2}\right)^2\)