Biểu thức đã cho chỉ tồn tại max mà ko tồn tại min (x càng lớn thì A càng nhỏ)
Biểu thức đã cho chỉ tồn tại max mà ko tồn tại min (x càng lớn thì A càng nhỏ)
Cho P=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
a) Tìm x để P nguyên
b) Tìm min của P
Cứu mình với mn ơi !!!!!!!!!!!
tìm min A=\(\dfrac{-1}{2x-3\sqrt{x}+2}\) với x ko âm
bài 1:tìm min A=\(\dfrac{5x^2-12x+8}{\left(x-1\right)^2}\)
bài 2: chứng minh với mọi n\(\in\)N* và n\(\ge\)3:
\(\dfrac{1}{9}+\dfrac{1}{25}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\)
bài 3: tìm min, max của A=2x+3y biết \(2x^2+3y^2\le5\)
bài 4: tìm min của B=\(\sqrt{x-1}+\sqrt{5-x}\)
và A=\(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
ai giải được là thiên tài!
\(a\sqrt{2-b^2}+b\sqrt{2-a^2}=2\)
tìm Min của P = \(\dfrac{1}{a}+\dfrac{1}{b}-a-b\)
cho 3 số thực dương a,b,c Tìm Min của
P= \(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{1}{5\sqrt{a+b+c}}\)
mong mn giúp em vs ạ
1) Tìm min A= \(\dfrac{3}{2+\sqrt{2x-x^2+7}}\)
2)Tìm max B =\(x+\sqrt{2\left(1-x\right)}\)
Giúp em với ạ, giải chi tiết cho em dễ hiểu được khog ạ
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
Tìm Min :
\(M=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
biết a,b,c>0. tìm min \(A=\dfrac{a}{\sqrt{a^2+9bc}}+\dfrac{b}{\sqrt{b^2+9ac}}+\dfrac{c}{\sqrt{c^2+9ab}}\)