1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
a,b,c là các số thực dương. Tìm Min \(P=\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}+\dfrac{2b^2+bc}{\left(c+\sqrt{ab}+a\right)^2}+\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\)
Cho các số thực dương a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\).CMR
\(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
CMR với bất kì các số thực dương a,b,c sao cho a+b+c=ab+bc+ac , bất đẳng thức sau đây xảy ra :
\(3+\sqrt[3]{\dfrac{a^3+1}{2}}+\sqrt[3]{\dfrac{b^3+1}{2}}+\sqrt[3]{\dfrac{c^3+1}{2}}\le2\left(a+b+c\right)\)
1. Cho \(x,y,z>1\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) . Cmr \(\sqrt{x+y+z}\ge\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}\)
2. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=6\) . Tính Min của \(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\)
3. Cho a,b,c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\) . Tính min của \(B=a+b+c+\dfrac{1}{abc}\)
4. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c+ab+bc+ac=6\) . Tính Max của \(C=abc\)
5. Cho a,b,c là các số thực dương thỏa mãn \(a+b+c=2\) . Tính Max của \(D=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Giúp mk nhanh nhé mn ơi
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
Cho 3 số thực a,b,c thỏa mãn: \(3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)-2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=404\)
Tìm MaxP \(=\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}+\dfrac{1}{\sqrt{5c^2+2ca+2a^2}}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
Cho a,b,c > 0 thỏa a+b+c=abc. Tìm GTLN của BT :
\(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)