Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu đẳng thức xảy ra khi a,b cùng dấu được :
\(\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\) (1)
Mặt khác : \(\left|x-7\right|\ge0\) (2)
Từ (1) và (2) suy ra \(A\ge8\)
Do đó MIN A = 8 \(\Leftrightarrow\begin{cases}x-1\ge0\\9-x\ge0\\x=7\end{cases}\) <=> x = 7