1: ĐKXĐ: \(-1< x< 1\)
2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)
3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)
4: ĐKXĐ: \(2< a\le3\)
1: ĐKXĐ: \(-1< x< 1\)
2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)
3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)
4: ĐKXĐ: \(2< a\le3\)
Tìm điều kiện có nghĩa:
1) \(-\dfrac{1}{\sqrt{a+2}}\)
2) \(\sqrt{\dfrac{3}{\left(x-2\right)^2}}\)
3) \(\sqrt{\dfrac{-3}{a^2-4a+4}}\)
4) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
5) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
6) \(\sqrt{\dfrac{-4}{x^2-1}}\)
7) \(\sqrt{\dfrac{x+1}{x-2}}\)
8) \(\sqrt{\dfrac{x-2}{x+3}}\)
Tìm điều kiện có nghĩa:
1) \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
3) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{x^2+2x-3}\)
2) \(\sqrt{2x^2+5x+3}\)
3) \(\sqrt{\dfrac{4}{x-1}}\)
4) \(\sqrt{\dfrac{-1}{x-3}}\)
5) \(\sqrt{\dfrac{-3}{x+2}}\)
6) \(\sqrt{\dfrac{1}{2a-1}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
Câu 3: Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{3}{\sqrt{x}+1}\) + \(\dfrac{6\sqrt{x}-4}{1-x}\)
a. Tìm điều kiện của x để A có nghĩa rồi rút gọn A. Tính giá trị của A khi x = 6-2\(\sqrt{5}\)
b. Tìm giá trị của x để A < \(\dfrac{1}{2}\)
c. Tìm giá trị nhỏ nhất của biểu thức A
Cho biểu thức:
P=(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-4}{2\sqrt{x}-x}\)):(\(\dfrac{2+\sqrt{x}}{\sqrt{x}}\)-\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\))
a)Tìm điều kiện của x để P có nghĩa
b)Rút gọn P
c)Tính giá trị của P khi x=\(\dfrac{3-\sqrt{5}}{2}\)
P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a)tìm điều kiện để P có nghĩa
b)rút gọn P
c)tính giá trị của P với x=\(3+2\sqrt{2}\)
giải các hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\)
b2.
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B3. Tìm ĐKXĐ
\(\dfrac{1}{x\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}\)
b4. so sánh A với 1
A=\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b5.tính
a,\(\sin47+2\sin38-\cos43-\cos52\)
b, \(C=\dfrac{2\sin^2x-1}{\sin x-\cos x}\)
Tìm điều kiện để các biểu thức sau xác định
a)\(\sqrt{x+1}-\dfrac{1}{2}\)
b)\(2.\sqrt{1-2x}-\dfrac{\sqrt{3}-1}{4}\)
c)\(\sqrt{x+1}-\sqrt{x-2}\)
d)\(\sqrt{2-3x}-\sqrt{1-2x}\)
e)\(2.\sqrt{\sqrt{3}-2x}+\dfrac{1}{x-1}\)
f)\(\dfrac{1}{2}.\sqrt{x-\dfrac{\sqrt{3}}{2}}-\dfrac{1}{\sqrt{x}-1}\)
g)\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\)
h)\(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x^2+2}}\)
tìm điều kiện của x để căn thức a) \(\sqrt{x+5}\) ;b) \(\sqrt{7-x}\); c)\(\sqrt{\dfrac{1}{x+3}}\) ;d)\(\sqrt{\dfrac{-2}{x-3}}\) có nghĩa