\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
\(f\left(6\right)=a\)
Để hàm số liên tục tại x=6 thì \(f\left(6\right)=\lim\limits_{x\rightarrow6}f\left(x\right)\)
=>a=13