títtt

tìm m để hàm số liên tục trên R

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{3x^2+5x-2}{x+2}\\m\end{matrix}\right.\) khi \(x\ne-2\); khi \(x=-2\)

Nguyễn Lê Phước Thịnh
19 tháng 11 lúc 19:56

Khi \(x\ne-2\) thì \(f\left(x\right)=\dfrac{3x^2+5x-2}{x+2}\) là một hàm phân thức hoàn toàn xác định nên f(x) liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+5x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+6x-x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(3x-1\right)}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}3x-1=3\cdot\left(-2\right)-1=-7\)

\(f\left(-2\right)=m\)

Để hàm số liên tục trên R thì hàm số liên tục tại x=2 và liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(2)

Từ (1),(2) suy ra Để hàm số liên tục trên R thì hàm số liên tục tại x=2

=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

=>m=-7

Bình luận (0)

Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết