D. AB, AC là hai cạnh góc vuông, BC là cạnh huyền
D. AB, AC là hai cạnh góc vuông, BC là cạnh huyền
D. AB, AC là hai cạnh góc vuông, BC là cạnh huyền
D. AB, AC là hai cạnh góc vuông, BC là cạnh huyền
Cho tam giác vuông ABC có AB=3/4; AC-AB=3cm. Biết đường vuông góc kẻ từ A đến cạnh huyền BC là 7,2cm. Tính độ dài hai hình chiếu của 2 cạnh góc vuông AB và AC lên BC.
cho tam giác vuông ABC vuông tại A và M là trung điểm của BC, hãy chỉ ra cạnh huyền, cạnh góc vuông, trung tuyến ứng với cạnh huyền. A cho cạnh AB=9cm, AC=12cm. tính BC,MA, diện tích tam giác ABC,ABM? B cho góc B bằng 45 độ, tính góc C, chứng minh tam giác ABC vuông cân và AM vuông góc với bc. tính AM
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
Tam giác ABC, có cạnh huyền BC=102. Hai cạnh góc vuông tỉ lệ với 8 và 15. Tính các cạnh góc vuông AB,AC .
cho tam giác abc vuông tại a có ab phần ac bằng 3 phần 4 , ac - ab = 3 biết độ dài đường vuông góc kẻ từ a xuống cạnh huyền là 7,2 cm tính độ dài 2 hình chiếu của 2 cạnh góc vuông ab và ac trên đường thẳng bc
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC , H thuộc cạnh BC sao cho MH vuông góc BC và MH = HB . Chứng mihn AH là tia phân giác của góc A
Cho tam giác ABC vuông tại A( AB < AC) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông góc BC và MH=HB. Chứng minh rằng AH là tia phân giác góc A
Tam giác ABC có phải là tam giác vuông không biết AB = 4a + 5, BC= 9a + 12, AC = 8a + 11, với a là độ dài cạnh huyền của tam giác vuông cân có độ dài cạnh góc vuông là 1
Câu 4. (3,0 điểm) Cho tam giác ABC vuông tại A có 2 cạnh AB = AC. Gọi M là trung điểm của cạnh BC. Lấy một điểm D bất kì thuộc cạnh BC. Qua B và C, kẻ hai đường vuông góc với cạnh AD, lần lượt cắt AD tại H và K . Gọi I là giao điểm của AM và CK.
a) Chứng minh BH = AK ;
b) Chứng minh DI L AC ;
c) Chứng minh KM là đường phân giác của HKC.