`\sqrt{9+4\sqrt{5}}=\sqrt{(\sqrt{5})^2+2.\sqrt{5}.2+2^2}`
`=\sqrt{(\sqrt{5}+2)^2}=|\sqrt{5}+2|=\sqrt{5}+2`
\(=\sqrt{5+2.2.\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}+2\right|=\sqrt{5}+2\)
`\sqrt{9+4\sqrt{5}}=\sqrt{(\sqrt{5})^2+2.\sqrt{5}.2+2^2}`
`=\sqrt{(\sqrt{5}+2)^2}=|\sqrt{5}+2|=\sqrt{5}+2`
\(=\sqrt{5+2.2.\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}+2\right|=\sqrt{5}+2\)
tính
c. \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
???
\(\sqrt[3]{9+4\sqrt{5}}_{ }-\sqrt[3]{9-4\sqrt{5}}\) \(\sqrt[3]{70+\sqrt{4901}}-\sqrt[3]{70-\sqrt{4901}}\)
giúp mình với :((
Rút gọn biểu thức
1) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
2) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
Tính:
i) \(\sqrt{8-3\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
j) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\)
k) \(\sqrt{9-3\sqrt{5}}-\sqrt{9+3\sqrt{5}}\)
Rút gọn: A = \(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9-4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}\)
Thực hiện phép tính:
a, M = \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b, N = \(\sqrt{8-2\sqrt{7}}\) - \(\sqrt{8+2\sqrt{7}}\)
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
Giải các phương trình sau:
\(\sqrt{\frac{4}{9-4\sqrt{5}}}+\sqrt{\frac{9}{9+4\sqrt{5}}}\)
\(\left(5-4\sqrt{3}\right):\frac{2+\sqrt{3}}{2-\sqrt{3}}\)
\(\sqrt{\left(2-\sqrt{5}\right)^2}.\sqrt{\frac{1}{\sqrt{5}-2}}\)
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)