Xét N ta có :
N = \(\frac{-7}{10^{2005}}\)+ \(\frac{-15}{10^{2006}}\)
N = \(\frac{-7}{10^{2005}}\)+ \(\frac{-7}{10^{2006}}\)+\(\frac{-8}{10^{2006}}\)
Xét M ta có :
M = \(\frac{-15}{10^{2005}}\)+\(\frac{-7}{10^{2006}}\)
M = \(\frac{-8}{10^{2005}}\)+\(\frac{-7}{10^{2005}}\)+ \(\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}\)< \(\frac{-8}{10^{2005}}\) => N < M
ta có:M-N=\(\dfrac{-15}{10^{2005}}-\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}-\dfrac{-15}{10^{2006}}\)
=\(\dfrac{-8}{10^{2015}}\)+\(\dfrac{8}{10^{2016}}\)=8(\(\dfrac{1}{10^{2006}}-\dfrac{1}{10^{2005}}\))
Ta có:102006>102005<=>\(\dfrac{1}{10^{2006}}< \dfrac{1}{10^{2005}}\)
<=>\(\dfrac{1}{10^{2006}}-\dfrac{1}{10^{2005}}< 0\)
=>M-N<0 hay N>M