ĐK: \(a\ge0;a\ne1\)
M = \(\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
ĐK: \(a\ne1vàa\ge0\)
\(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\\ =\left(\dfrac{a+2\sqrt{a}+1}{\sqrt{a}+1}\right).\left(\dfrac{1-2\sqrt{a}+a}{1-\sqrt{a}}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\right).\left(\dfrac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\right)\)
\(=\left(\sqrt{a}+1\right).\left(1-\sqrt{a}\right)=\sqrt{a}-a+1-\sqrt{a}\\ =1-a\)