Chào bạn, bạn hãy theo dõi lời giải của mình nhé!
C1 : Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
C2 : Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\right)\)
\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)
\(A=\left(1-\frac{1}{2^{2013}}\right).2=1.2-\frac{1}{2^{2013}}.2=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
Có gì bạn không hiểu bạn cứ nhắn tin gửi lại mình nhé! Chúc bạn học tốt!
A=﴾ghi lại biieur thức﴿
2A=2+1+1/2+1/2^2+….+1/2^2011
2A‐A=A=﴾2+1+1/2+1/2^2+….+1/2^2011﴿‐﴾1+1/2+1/2^2+...+1/2^2012﴿
A=2‐1/2^201
A=﴾ghi lại biieur thức﴿
2A=2+1+1/2+1/2^2+….+1/2^2011
2A‐A=A=﴾2+1+1/2+1/2^2+….+1/2^2011﴿‐﴾1+1/2+1/2^2+...+1/2^2012﴿
A=2‐1/2^2012
Mình không hiểu lắm phần trả lời của bạn