Đặt \(y+z=\left(z+2x\right)-\left(2x-y\right)\) ta có:
\(8x^3\left[\left(z+2x\right)-\left(2x-y\right)\right]-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
\(=8x^3\left(z+2x\right)-y^3\left(z+2x\right)-8x^3\left(2x-y\right)-z^3\left(2x-y\right)\)
\(=\left(z+2x\right)\left(8x^3-y^3\right)-\left(2x-y\right)\left(8x^3+z^3\right)\)
\(=\left(z+2x\right)\left(2x-y\right)\left(4xy+2xy+y^2\right)-\left(2x-y\right)\left(2x+z\right)\left(4x^2-2xz+z^2\right)\)
\(=\left(z+2x\right)\left(2x-y\right)\left(2xy+2xz\right)+y^2-z^2\\ =\left(z+2x\right)\left(2x-y\right)\left(y+z\right)\left(2x+y-z\right)\)
đặt 2x=t
\(A=t^3\left(y+z\right)-y^3\left(z+t\right)-z^3\left(t-y\right)\)
\(A=t^3\left(y-t+z+t\right)-y^3\left(z+t\right)+z^3\left(y-t\right)\)
\(A=t^3\left(y-t\right)+t^3\left(z+t\right)-y^3\left(z+t\right)+z^3\left(y-t\right)\)
\(A=\left(y-t\right)\left(t^3+z^3\right)+\left(z+t\right)\left(t^3-y^3\right)\)
\(A=\left(y-t\right)\left(t+z\right)\left(t^2-tz+z^2\right)+\left(z+t\right)\left(t-y\right)\left(t^2+ty+y^2\right)\)
\(A=\left(y-t\right)\left(t+z\right)\left[\left(t^2-tz+z^2\right)-\left(t^2+ty+y^2\right)\right]\)
\(A=\left(y-t\right)\left(t+z\right)\left[-tz-ty+z^2-y^2\right]\)
\(A=\left(y-t\right)\left(t+z\right)\left[\left(z+y\right)\left(-t+z-y\right)\right]\)
\(A=\left(2x-y\right)\left(2x+z\right)\left(z+y\right)\left(2x+y-z\right)\)
kết quả bạn đúng nhưng bạn biến đổi linh tính.