a) \(P=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-2}+\dfrac{x+\sqrt{x}-2}{\sqrt{x}+2}\)
\(P=\dfrac{\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot2+2^2}{\sqrt{x}-2}+\dfrac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}+2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(P=\left(\sqrt{x}-2\right)+\left(\sqrt{x}-1\right)\)
\(P=\sqrt{x}-2+\sqrt{x}-1\)
\(P=2\sqrt{x}-3\)
b) Để: \(P=-x\) thì:
\(2\sqrt{x}-3=-x\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)
Mà: \(\sqrt{x}+3\ge3>0\forall x\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\left(tm\right)\)