\(a,x=36\Leftrightarrow A=\dfrac{2+\sqrt{36}}{\sqrt{36}}=\dfrac{2+6}{6}=\dfrac{4}{3}\)
\(b,B=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\left(dkxd:x>0,x\ne4\right)\\ =\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\\ =\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\\ =\dfrac{x+2\sqrt{x}}{x-4}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(c,P=\dfrac{A}{B}=\dfrac{2+\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{x-4}{x}\)
Để \(Px\le\dfrac{3}{2}\left(\sqrt{x}-1\right)\) thì \(\dfrac{x-4}{x}.x\le\dfrac{3}{2}\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x-4-\dfrac{3}{2}\sqrt{x}+\dfrac{3}{2}\le0\\ \Leftrightarrow x-\dfrac{3}{2}\sqrt{x}-\dfrac{5}{2}\le0\)
\(\Leftrightarrow x\le\dfrac{25}{4}\)
Kết hợp với điều kiện \(x>0,x\ne4,x\in Z\), ta kết luận \(S=\left\{1;2;3;5;6\right\}\)