Sửa thành `M=[\sqrt{a}-1]/\sqrt{a}`
Ta có:`M-1=[\sqrt{a}-1]/\sqrt{a}-1`
`=[\sqrt{a}-1-\sqrt{a}]/\sqrt{a}`
`=[-1]/\sqrt{a}`
Vì `-1 < 0` mà `\sqrt{a} > `0
`=>[-1]/\sqrt{a} < 0<=>M-1 < 0<=>M < 1` (đpcm)
Sửa thành `M=[\sqrt{a}-1]/\sqrt{a}`
Ta có:`M-1=[\sqrt{a}-1]/\sqrt{a}-1`
`=[\sqrt{a}-1-\sqrt{a}]/\sqrt{a}`
`=[-1]/\sqrt{a}`
Vì `-1 < 0` mà `\sqrt{a} > `0
`=>[-1]/\sqrt{a} < 0<=>M-1 < 0<=>M < 1` (đpcm)
M=\(\dfrac{a+1}{\sqrt{a}}\)+\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}\)+\(\dfrac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)(với a>0,a khác 1)
a) Chứng minh rằng M>4
b)Với những giá trị nào của a thì biểu thức N=\(\dfrac{6}{M}\) nhận giá trị nguyên
Cho a,b,c là các số thực dương thỏa mãn a+b+c=abc . Chứng minh rằng \(\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\sqrt{1+c^2}< 1\)
Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
Chứng minh A+B= \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Help
Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Với \(a\ge0,a\ne1\), chứng minh \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\)
1. chứng minh rằng các hằng đẳng thức sau với điều kiện các biểu thức tồn tại:
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\)
b)\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
Cho biểu thức A = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\):\(\dfrac{\sqrt{x}-1}{2}\) (\(x\ge0\); \(x\ne1\)). Chứng minh rằng \(A>0\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)