\(\left\{{}\begin{matrix}\dfrac{1}{\left|x-1\right|}+\dfrac{3}{\sqrt{y-2}}=4\\\dfrac{5}{\left|x-1\right|}-\dfrac{2}{\sqrt{y-2}}=3\end{matrix}\right.\)
giải các hpt sau: a)\(\left\{{}\begin{matrix}4\sqrt{5}-y=3\sqrt{2}\\10x+\sqrt{2}y=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{3x}{4}+\dfrac{2y}{5}=2,3\\x-\dfrac{3y}{5}=0,8\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left|x-1\right|-\dfrac{3}{\sqrt{y-2}}=-1\\2\left|1-x\right|+\dfrac{1}{\sqrt{y-2}}=5\end{matrix}\right.\)cíu zới
Bài 1: Giải các hệ PT
a) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y-2}=4\\\dfrac{4}{x}-\dfrac{1}{y-2}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+1\right)=\dfrac{1}{2}xy+5\\\dfrac{1}{3}\left(x-3\right)\left(y-5\right)=\dfrac{1}{3}xy-\dfrac{4}{3}\end{matrix}\right.\)
Giải giúp mình với ạ :3
a / \(\sqrt{2x^2+6x+1}=x+2\)
b / \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{\left|x+3\right|}+\dfrac{4}{\left|y\right|-2}=\dfrac{11}{6}\\\dfrac{5}{\left|x+3\right|}+\dfrac{2}{\left|y\right|-2}=\dfrac{11}{6}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3}{\left|x+2\right|}+\dfrac{1}{\sqrt{y-2}}=4\\\dfrac{2}{\left|x+2\right|}-\dfrac{1}{\sqrt{y-2}}=1\end{matrix}\right.\)
Ghpt:
a) \(\left\{{}\begin{matrix}x^2+2y^2=2x-2xy+1\\3x^2+2xy-y^2=2x-y+5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}4xy+4x^2+4y^2+\dfrac{3}{\left(x+y\right)^2}=7\\2x+\dfrac{1}{x+y}=3\end{matrix}\right.\)
Giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{2y-5x}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
Giải hệ pt sau = phương pháp thế:
a, \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}3x+2y=2\\6x-3y=18\end{matrix}\right.\)