a: \(\left(4\sqrt{8}-\sqrt{72}+5\sqrt{\dfrac{1}{2}}\right)\cdot2\sqrt{2}\)
\(=\left(4\cdot2\sqrt{2}-6\sqrt{2}+\dfrac{5}{\sqrt{2}}\right)\cdot2\sqrt{2}\)
\(=\left(2\sqrt{2}+\dfrac{5}{\sqrt{2}}\right)\cdot2\sqrt{2}\)
\(=2\sqrt{2}\cdot2\sqrt{2}+\dfrac{5}{\sqrt{2}}\cdot2\sqrt{2}\)
\(=8+10=18\)
b: Sửa đề:\(\dfrac{5+\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\sqrt{5}+1+\sqrt{3}-\sqrt{3}-\sqrt{5}\)
=1
\(\left(4\sqrt{8}-\sqrt{72}+5\sqrt{\dfrac{1}{2}}\right)2\sqrt{2}\\ =\left(8\sqrt{2}-6\sqrt{2}+5\sqrt{\dfrac{1}{2}}\right)2\sqrt{2}\\ =8.2.\sqrt{2}.\sqrt{2}-6.2.\sqrt{2}.\sqrt{2}+5.2.\sqrt{2}.\sqrt{\dfrac{1}{2}}\\ =32-24+10\\ =18\\ \dfrac{5+\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\left(\sqrt{3}+\sqrt{5}\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}\left(\sqrt{3}+\sqrt{5}\right)\\ =\sqrt{5}+1+\sqrt{3}\left(\sqrt{3}+\sqrt{5}\right)\\ =\sqrt{5}+1+3+\sqrt{15}\\ =4+\sqrt{5}+\sqrt{15}\)