\(y=\sqrt{6x-x^2}\)
=>\(y'=\dfrac{\left(6x-x^2\right)'}{2\sqrt{6x-x^2}}=\dfrac{6-2x}{2\sqrt{6x-x^2}}=\dfrac{3-x}{\sqrt{6x-x^2}}\)
=>Chọn A
\(y=\sqrt{6x-x^2}\)
=>\(y'=\dfrac{\left(6x-x^2\right)'}{2\sqrt{6x-x^2}}=\dfrac{6-2x}{2\sqrt{6x-x^2}}=\dfrac{3-x}{\sqrt{6x-x^2}}\)
=>Chọn A
tính đạo hàm của các hàm số sau
a) \(y=x^2+3x-6x^6+\dfrac{2x-3}{x-1}\)
b) \(y=3x^2-4x+\sqrt{2x^2-3x+1}\)
c) \(y=\sqrt{4x^2-3x+1}-4\)
Tính các đạo hàm của hàm số sau:
a) \(y=\sqrt{x}\left(x+3\right)\)
b) \(y=\sqrt{2x^2-6x-9}\)
c) \(y=\left(\sqrt{x^2+1}+x\right)^{10}\)
tìm khoảng đồng biến nghịch biến
a) \(y=\dfrac{x^2+3x+2}{3x+2}\)
b) \(y=\sqrt{3x+6x^2}\)
c) \(y=\sqrt{16-x^2}\)
d) \(y=\dfrac{x^2-2x+2}{x^2+3}\)
tìm khoảng đồng biến nghịch biến
a) \(y=\sqrt{x^2+2x+3}\)
b) \(y=\sqrt{4-x^2}\)
c) \(y=\dfrac{x^2-6x+10}{x-3}\)
d) \(y=\sqrt{-x+2x}\)
e) \(y=\sqrt{4+5x^2}\)
tính đạo hàm của các hàm số sau
a) \(y=\dfrac{x^2+3x-1}{x+2}\)
b) \(y=\dfrac{2x^2-x}{x^2+1}\)
c) \(y=\dfrac{3-2x}{x-1}+\sqrt{2x-3}\)
xác định đường tiệm cận đứng của đồ thị hàm số sau
a) \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)
b) \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)
c) \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)
d) \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)
1. đạo hàm của hàm số f(x) = 2x - 5 tại \(x_0=4\)
2. đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
3. đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
1) đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
2) đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
Tính đạo hàm của hàm số
1.\(y=\dfrac{1}{4}x^2-x+3\)
2.y=(sinx-1)(2x-3)
3.\(y=\sqrt{x^2-3x+1}\)
4.y \(=\dfrac{x-1}{x+3}\)
a) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+2}+\sqrt{5x+4}-5}{x-1}_{ }\)
b) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+4}+\sqrt{90-6x}-5}{x^2}\)