Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt

xác định đường tiệm cận đứng của đồ thị hàm số sau

a) \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)

b)  \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

c) \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)

d) \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)

a: \(\lim\limits_{x\rightarrow2^+}\dfrac{\sqrt{x-2}+1}{x^2-3x+2}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^+}\sqrt{x-2}+1=\sqrt{2-2}+1=1>0\\\lim\limits_{x\rightarrow2^+}x^2-3x+2=\lim\limits_{x\rightarrow2^+}\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\)

=>x=2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{x-2}+1}{x^2-3x+2}\)

b: \(\lim\limits_{x\rightarrow-5^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}=\dfrac{\sqrt{5-5}-1}{\left(-5\right)^2+4\cdot\left(-5\right)}=\dfrac{-1}{25-20}=\dfrac{-1}{5}\)

=>x=-5 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{5+x-1}{\left(\sqrt{5+x}+1\right)\left(x^2+4x\right)}=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{x+4}{\left(\sqrt{5+x}+1\right)\cdot x\left(x+4\right)}\)

\(=\lim\limits_{x\rightarrow\left(-4\right)^+}\dfrac{1}{x\left(\sqrt{5+x}+1\right)}=\dfrac{1}{\left(-4\right)\cdot\left(\sqrt{5-4}+1\right)}=\dfrac{1}{-8}=-\dfrac{1}{8}\)

=>x=-4 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

\(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{5+x}-1}{x^2+4x}=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0^+}\sqrt{5+x}-1=\sqrt{5+0}-1=\sqrt{5}-1>0\\\lim\limits_{x\rightarrow0^+}x^2+4x=0\end{matrix}\right.\)

=>Đường thẳng x=0 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{5+x}-1}{x^2+4x}\)

c: \(\lim\limits_{x\rightarrow0^+}\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{5x+1-x^2-2x-1}{5x+1+\sqrt{x+1}}}{x\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x^2+3x}{\left(5x+1+\sqrt{x+1}\right)\cdot x\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x\left(x-3\right)}{x\left(x+2\right)\left(5x+1+\sqrt{x+1}\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{-x+3}{\left(x+2\right)\left(5x+1+\sqrt{x+1}\right)}=\dfrac{-0+3}{\left(0+2\right)\left(5\cdot0+1+\sqrt{0+1}\right)}\)

\(=\dfrac{3}{2\cdot\left(6+1\right)}=\dfrac{3}{14}\)

=>x=0 không là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\)

\(\lim\limits_{x\rightarrow\left(-2\right)^+}\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\) không có giá trị vì khi x=-2 thì căn x+1 vô giá trị

=>Đồ thị hàm số \(y=\dfrac{5x+1-\sqrt{x+1}}{x^2+2x}\) không có tiệm cận đứng

d: \(\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\) không có giá trị vì khi x=0 thì \(\sqrt{4x^2-1}\) không có giá trị

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1^+}\sqrt{4x^2-1}+3x^2+2=\sqrt{4-1}+3\cdot1^2+2=5+\sqrt{3}>0\\\lim\limits_{x\rightarrow1^+}x^2-x=0\end{matrix}\right.\)

=>x=1 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{\sqrt{4x^2-1}+3x^2+2}{x^2-x}\)


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Văn Trí
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết