Vũ Minh Tuấn,Hoàng Tử Hà, đề bài khó wá, Băng Băng 2k6, Aki Tsuki, Lê Gia Bảo, Nguyễn Việt Lâm,
Trần Nguyễn Bảo Quyên, Phạm Lan Hương, Nguyễn Trúc Giang,
help meeee! Lát nx phải nộp r ạ!
thanks nhiều!
Vũ Minh Tuấn,Hoàng Tử Hà, đề bài khó wá, Băng Băng 2k6, Aki Tsuki, Lê Gia Bảo, Nguyễn Việt Lâm,
Trần Nguyễn Bảo Quyên, Phạm Lan Hương, Nguyễn Trúc Giang,
help meeee! Lát nx phải nộp r ạ!
thanks nhiều!
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2a^2c^2\)
cho a>0, b>0 thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}=2\)
tìm GTLN \(Q=\dfrac{1}{a^4+b^2+2ab^2}+\dfrac{1}{b^4+a^2+2a^2b}\)
Cho a,b >0 và \(2a-ab-4\ge0\)
Tìm GTNN của \(T=\dfrac{a^2+2b^2}{ab}\)
Cho a,b,c > 0.CMR:
a, \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b, \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
cho a,b>0 thỏa \(\frac{1}{a}+\frac{1}{b}=2\)
tìm giá trị lớn nhất của Q=\(\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}\)
Cho a,b,c > 0 . Cmr:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}+\dfrac{4}{a+2b+c}\)
Cho a,b,c>0 và abc=1 CMR \(\frac{a^4\left(b^2+c^2\right)}{b^3+2c^3}+\frac{b^4\left(a^2+c^2\right)}{c^3+2a^3}+\frac{c^4\left(a^2+b^2\right)}{a^3+2b^3}\ge2\)
cm (2a^2+3b^2)/(2a^3+3b^3)+(2b^2+3a^2)/(2b^3+3a^3)<=4/(a+b)
Chứng minh rằng với mọi a, b, c > 0 ta có :
\(\frac{a^4}{1+a^2b}+\frac{b^4}{1+b^2c}+\frac{c^4}{1+c^2a}\ge\frac{abc\left(a+b+c\right)}{1+abc}\)