Cho a,b,c > 0.CMR:
a, \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b, \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho các số thực \(a,b,c\ge1\). Chứng minh rằng:
\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
Cho a,b,c>0 và abc=1 CMR \(\frac{a^4\left(b^2+c^2\right)}{b^3+2c^3}+\frac{b^4\left(a^2+c^2\right)}{c^3+2a^3}+\frac{c^4\left(a^2+b^2\right)}{a^3+2b^3}\ge2\)
chứng minh rằng với mọi số dương a,b,c ta luôn có
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
chứng minh rằng với mọi số dương a,b,c ta luôn có
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
Cho a,b,c>0 , chứng minh rằng:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Cho a,b,c > 0 . CMR : \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)≥\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3