Gọi M,m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y=\(\sqrt{1+x}+\sqrt{1-x}\). Giá trị của M+m là
A.4 B.2+\(\sqrt{2}\) C.4+\(\sqrt{2}\) D.2
gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=2\(\sqrt{7+6x-(x)^{2}}\)+x2 -6x +2014.Tính tổng các giá trị nguyên của a thuộc đoạn [m,M]
Cho x,y là các số thực sao cho \(x-2y+2=2\left(\sqrt{x-1}+\sqrt{3-2y}\right).\). Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x - 2y. Tính M + m
Xét các số thực x, y thỏa mãn
\(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức \(T=x^2+y^2-2x+2y+2\).Tính P = m + M
Tìm giá trị nhỏ nhất m và lớn nhất M của hàm số \(f\left(x\right)=2\sqrt{x-4}+\sqrt{8-x}\)
Cho hàm số \(y=f\left(x\right)=x^2+6x+5\). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y=f\left(f\left(x\right)\right)\) với \(x\in\left[-3;0\right]\). Tính tổng \(S=m+M.\)
y= {x2-2x-8 khi x≤2
y= {2x-12 khi x>2
Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số khi x ϵ [-1;4] . Tính M+m
Cho hàm số y = x 2 − 2(m + 1 m )x + m (m > 0) xác định trên [−1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [−1; 1] lần lượt là y 1 , y 2 thỏa mãn y 1 - y 2 = 8. Khi đó giá trị của m bằng
A. m = 1
B. m ∈ ∅
C. m = 2
D. m = 1, m = 2
Cho hàm số Y=x^2-2(m+1/m)x +m (m>0) xác định trên [-1;1]. Giá trị lớn nhất. giá trị nhỏ nhất của hàm số trên [-1;1] lần lượt là y1'y2 thỏa mãn y1+y2=8. khi đó giá trị của m bằng