Chọn C.
Phương pháp: Xác định hình H từ đó tính diện tích.
Chọn C.
Phương pháp: Xác định hình H từ đó tính diện tích.
Trong mặt phẳng tọa độ Oxy, gọi (H) là tập hợp điểm biểu diễn số phức w = ( 1 + 3 i ) z + 2 thỏa mãn | z - 1 | ≤ 2 . Tính diện tích của hình (H).
A. 8 π .
B. 12 π .
C. 16 π .
D. 4 π .
Cho số phức z thỏa mãn điều kiện z + 4 + z - 4 = 10 Tập hợp điểm biểu diễn số phức z trong mặt phẳng tọa độ Oxy là một hình phẳng có diện tích bằng
A. 20 π
B. 15 π
C. 12 π
D. 16 π
Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứ các điểm biểu diễn các số phức z thỏa mãn z 16 và 16 z có phần thực và phần ảo đều thuộc đoạn [0;1]. Tính diện tích S của (H)
A. S = 32 6 - π
B. S = 16 4 - π
C. S = 256
D. S = 64 π
Trong mặt phẳng tọa độ Oxy, gọi (H) là phần mặt phẳng chứa các điểm biểu diễn các số phức z thỏa mãn z 16 và z 16 có phần thực và phần ảo đều thuộc đoạn [ 0 ; 1 ] . Tính diện tích S của (H)
A. S = 256
B. S = 64 π
C. S = 16 4 − π
D. S = 32 6 − π
Cho số phức z thỏa mãn điều kiện z − 3 + 4 i ≤ 2 . Trong mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức w = 2 z + 1 − i là hình tròn có diện tích
A. 9 π
B. 12 π
C. 16 π
D. 25 π
Cho số phức z thoả mãn z - 1 ≤ 1 và z - z ¯ có phần ảo không âm. Tập hợp các điểm biểu diễn số phức z là một miền phẳng. Tính diện tích S của miền phẳng này
A. S = π
B. S = 2 π
C. S = 1 2 π
D.S = 1.
Cho số phức z thỏa mãn điều kiện z - 3 + 4 i ≤ 2 . Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích bằng
A. S = 25 π
B. S = 4 π
C. S = 16 π
D. S = 9 π
Cho số phức z = 1 + 3 i . Gọi A,B lần lượt là điểm biểu diễn của các số phức (1+i)z và (3-i)z trong mặt phẳng tọa độ Oxy. Tính độ dài đoạn AB
Trong mặt phẳng tọa độ Oxy, cho số phức z thỏa mãn z - 1 + 2 i = 3 . Tập hợp các điểm biểu diễn cho số phức w=z(1+i) là đường tròn
A. Tâm I(3;-1); R = 3 2
B. Tâm I(3;-1);R=3
C. Tâm I(-3;1); R = 3 2
D. Tâm I(3;-1);R=3