\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
\(P=sin^2x+3cos^2x=1-cos^2x+3cos^2x=1+2cos^2x=1+2.\left(\dfrac{1}{4}\right)^2=\dfrac{9}{8}\)
Cho
1.tan α=\(\dfrac{1}{3} \) tính A=\(\dfrac{2\sin^2x+5}{4\cos^2x-3}\)
2.cot α=\(\dfrac{2}{5}\) tính B=\(\dfrac{3\cos^2x-\sin^2x}{c\text{os}^2x+2\sin^2x}\)
Trong hệ trục tọa độ Oxy, cho tam giác ABC có A(1;-5), B(2;1) và C(13;-8). Tính diện tích S của tam giác ABC
Help me!!!
1. Trong mặt phẳng tọa độ xOy cho ba điểm \(A\left(5,-8\right),B\left(-3,-2\right),C\left(11,0\right)\). Xác định tọa độ điểm M thuộc Ox sao cho\(\overrightarrow{AM}.\overrightarrow{MB}\) có giá trị nhỏ nhất.
2. Cho tam giác ABC có góc nhọn A, D và E lần lượt là hai điểm nằm ngoài tam giác sao cho tam giác ABD và tam giác ACE vuông cân tại A. M là trung điểm của BC. Chứng minh \(AM\perp DE\)
3. Trong mặt phẳng tọa độ xOy cho ba điểm \(A\left(1,2\right),B\left(-3,0\right),C\left(0,4\right)\). Xác định tọa độ điểm M thuộc Ox sao cho\(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) có giá trị nhỏ nhất.
Giúp mik giải Cho vectơ a và vectơ b có giá trị tuyệt đối vectơ a =3, gái trị tuyệt đối của vectơ b=2 và ( vectơ a, vectơ b)=60°. Khi đoa vectơ a × vectơ b A - căn 3 B căn 3 C 3 D -3
Cho tam giác ABC có AB=5, BC=7, CA=8. Tính số đo góc A của tam giác?
bài 1: cho tam giác ABC đều cạnh a trọng tâm G tính các tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC}\) ; \(\overrightarrow{AC}.\overrightarrow{CB}\) ; \(\overrightarrow{AG.}\overrightarrow{AB}\) ; \(\overrightarrow{GB.}\overrightarrow{GC}\) theo a
bài 2: cho tam giác ABC vuông tại A có AB =a BC=2a tính các tích vô hướng \(\overrightarrow{AB.}\overrightarrow{AC}\) ; \(\overrightarrow{AC.}\overrightarrow{CB}\) ; \(\overrightarrow{AB.}\overrightarrow{BC}\) theo a
bài 3: cho tam giác ABC có AB =4 BC=8 AC=6
a) tính \(\overrightarrow{AB.}\overrightarrow{AC}\) từ đó suy ra cos A
b) gọi G là trọng tâm của tam giác ABC tính tích vô hướng \(\overrightarrow{AG.}\overrightarrow{BC}\)
bài 4: cho tam giác ABC vuông tại A có BC =a\(\sqrt{3}\) AM là trung tuyến và \(\overrightarrow{AM.}\overrightarrow{BC}\) =\(\frac{a^2}{2}\) tính AB và AC theo a