giải phương trình nghiệm nguyên
\(x^2+y^2=2011\)
Giải phương trình:
\(1+4x\sqrt{x+\frac{1}{x}}=12x-x^2\)
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
giải phương trình
\(x+\sqrt{17-x^2}+x\cdot\sqrt{17-x^2}=9\)
Bài 1: Giải phương trình
a, \(x^2+5x+3m-1=0\)
b, \(2x^2+12x-15m=0\)
Giải phương trình:
\(\frac{x^2}{2}-\frac{y^2}{2}+x+2y+\frac{1}{2}=\sqrt{\left(x^2+2x+3\right)\left(-y^2-4y-2\right)}\)
Giải hệ phương trình: \(\begin{cases}\left(x-1\right)^2+6\left(x-1\right)y+4y^2=20\\x^2+\left(2y+1\right)^2=2\end{cases}\)
Xác định m để phương trình :
+, Có 2 nghiệm trái dấu
+, Có 2 nghiệm âm phân biệt
+, Có hai nghiệm dương phân biệt
a, \(x^2+5x+3m-1=0\)
b, \(2x^2+12x-15m=0\)
c, \(x^2-2\left(m-1\right)x+m^2=0\)
Tìm pass Wifi: biết \(\begin{cases}\log_4\left(x^2+y^2\right)-\log_4\left(2x\right)+1=\log_4\left(x+3y\right)\\\log_4\left(xy+1\right)-\log_4\left(4y^2+2y-2x+4\right)=\log_4\left(\frac{x}{y}\right)-1\end{cases}\)
Giải hệ phương trình trên tìm nghiệm x;y sau đó ghép thành số \(\overline{xyxyxy}\) để biết pas Wifi