d: \(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
\(i,\Leftrightarrow\left\{{}\begin{matrix}x+2y=5\sqrt{5}\\2\sqrt{5}x+2y=10+4\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2\sqrt{5}-1\right)x=10-\sqrt{5}\\x+2y=5\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10-\sqrt{5}}{2\sqrt{5}-1}=\dfrac{\sqrt{5}\left(2\sqrt{5}-1\right)}{2\sqrt{5}-1}=\sqrt{5}\\\sqrt{5}+2y=5\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\y=2\sqrt{5}\end{matrix}\right.\)
\(f.\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}y=1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x-8y=24\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=21\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\)
\(e.\left\{{}\begin{matrix}4x+7y=16\\4x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=40\\4x+7y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-3\end{matrix}\right.\)