Lời giải:
Lấy PT (2) trừ đi 2* PT(1) ta có:
$-(2y-y^2)-2(y-1)^2=-6$
$\Leftrightarrow y^2-2y-4=0$
Vì $y^2-2y=4$ nên $2\sqrt{x-2}=2+(2y-y^2)=2-(y^2-2y)=2-4=-2<0$ (vô lý)
Do đó hpt vô nghiệm.
Lời giải:
Lấy PT (2) trừ đi 2* PT(1) ta có:
$-(2y-y^2)-2(y-1)^2=-6$
$\Leftrightarrow y^2-2y-4=0$
Vì $y^2-2y=4$ nên $2\sqrt{x-2}=2+(2y-y^2)=2-(y^2-2y)=2-4=-2<0$ (vô lý)
Do đó hpt vô nghiệm.
giải phương trình:\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2y=3\\mx-\left(m+1\right)y=3m\\x-my=m+2\end{matrix}\right.\)
Giải và biện luận hệ đã cho trên
\(\left\{{}\begin{matrix}2^x+4^y=32\\xy=8\end{matrix}\right.\). Thấy \(x,y> 0\) . ÁP dụng BĐT AM-Gm t acos
\(\left(1\right)\Leftrightarrow32=2^x+2^{2y}\ge2\sqrt{2^{x+2y}}\)
\(\Rightarrow16\ge\sqrt{2^{2x+y}}\Rightarrow256\ge2^{2x+y}\)
\(\Rightarrow2^8\ge2^{2x+y}\Rightarrow8\ge2x+y\ge2\sqrt{2xy}\ge2\cdot\sqrt{2\cdot8}\)
\(=2\sqrt{16}=2\cdot4=8\)
Xảy ra khi \(x=4;y=2\) Lâm Tố Như
Làm hộ bài. KO phải Spam đợi nhận thù lao rồi xóa
B2 : Tính :
a, \(\left(\sqrt{x}-3\right)\)\(.\left(\sqrt{x}+2\right)\)
b, \(\left(\sqrt{x}-\sqrt{y}\right).\)\(\left(\sqrt{x}+\sqrt{y}\right)\)
c, \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right)\)\(.\sqrt{3}\)
d,\(\left(1+\sqrt{3}-\sqrt{5}\right)\)\(.\left(1+\sqrt{3}+\sqrt{5}\right)\)
Giải phương trình:
a,\(\sqrt{9\left(x-2\right)}\)=6
b,\(\sqrt{9\left(x-3\right)^2}\)=12
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).
\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Chứng minh x + y = 0