Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).
B2 : Tính :
a, \(\left(\sqrt{x}-3\right)\)\(.\left(\sqrt{x}+2\right)\)
b, \(\left(\sqrt{x}-\sqrt{y}\right).\)\(\left(\sqrt{x}+\sqrt{y}\right)\)
c, \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right)\)\(.\sqrt{3}\)
d,\(\left(1+\sqrt{3}-\sqrt{5}\right)\)\(.\left(1+\sqrt{3}+\sqrt{5}\right)\)
Giải hệ phương trình sau : \(\left\{{}\begin{matrix}\sqrt{x-2}+\left(y-1\right)^2=4\\2\sqrt{x-2}-\left(2y-y^2\right)=2\end{matrix}\right.\)
B1. Cho bt A = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)-\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2-1\)
a) rút gọnA
b) tính g.trị của A khi x=99, y=100
B2. cho bt P=\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
a) tìm đk để P có nghĩa
b) rút gọn P
c) tính g.trị của P khi a=4; b=1
\(\left(\sqrt{xy}+2\sqrt{\dfrac{y}{x}}-\sqrt{\dfrac{x}{y}+\sqrt{\dfrac{1}{xy}}}\right):\dfrac{1}{\sqrt{xy}}\)
Tìm x, biết
a) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
b) \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
cho\(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\)
tính x+y
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)