`24/x-24/[x-4]=1` `ĐK: x \ne 0,x \ne 4`
`=>24(x-4)-24x=x(x-4)`
`<=>24x-96-24x=x^2-4x`
`<=>x^2-4x+96=0`
`<=>x^2-4x+4+92=0`
`<=>(x-2)^2=-92` (Vô lí)
Vậy ptr vô nghiệm
\(\dfrac{24}{x}-\dfrac{24}{x-4}=1\). ĐKXĐ: \(x\ne0;4\).
\(\Leftrightarrow\dfrac{24\left(x-4\right)}{x\left(x-4\right)}-\dfrac{24x}{x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{x\left(x-4\right)}\)
\(\Rightarrow24\left(x-4\right)-24x=x\left(x-4\right)\)
\(\Leftrightarrow24x-96-24x=x^2-4x\)
\(\Leftrightarrow-96=x^2-4x\)
\(\Leftrightarrow x^2-4x+96=0\)
Xét \(\Delta=\left(-4\right)^2-4\cdot1\cdot96=-368< 0\)
⇒ Phương trình vô nghiệm
Vậy \(S=\varnothing.\)
\(\Leftrightarrow24x-96-24x=x\left(x-4\right)\)
\(\Leftrightarrow x\left(x-4\right)+96=0\)
=>x2-4x+96=0
hay \(x\in\varnothing\)