\(=\dfrac{15.11}{3.55}=\dfrac{5.3.11}{3.11.5}=1\)
\(\dfrac{15^{2016}.11^{2017}}{3^{2016}.55^{2017}}=\dfrac{5^{2016}}{5^{2017}}=\dfrac{1}{5}\)
\(=\dfrac{15.11}{3.55}=\dfrac{5.3.11}{3.11.5}=1\)
\(\dfrac{15^{2016}.11^{2017}}{3^{2016}.55^{2017}}=\dfrac{5^{2016}}{5^{2017}}=\dfrac{1}{5}\)
\(\dfrac{15^{2016}\times11^{2019}}{3^{2016}\times55^{2017}}\)
Biết rằng \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2016}}{a_{2017}}.\) Chứng minh rằng: \(\dfrac{a_1}{a_{2017}}=\left(\dfrac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2016}\)
Số sánh
(20^2016+11^2016)^2017 và (20^2017+11^2017)^2016
A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49}{\left(125.7\right)^3+5^9.14^3}\)
C = \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)= \(\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)
So sánh A= A=(26^2017+3^2017)^2016 va B=(26^2016+3^2016)^2017
SO SÁNH A và B : A=2016/(1*2)+2016/(3*4)+2016/(5*6)+......+2016/(1999*2000) và B=2017/1001+2017/1002+2017/1003+......+2017/2000
\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+3}{2017}+\dfrac{x+4}{2016}\)
2016/2017*(13-13 2016/2017)-1/2017*2017/2016
Tìm x biết : \(\dfrac{x+4}{2014}\)+\(\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)