\(\dfrac{15^{2016}\cdot11^{2019}}{3^{2016}\cdot55^{2017}}=\dfrac{3^{2016}\cdot5^{2016}\cdot11^{2019}}{3^{2016}\cdot11^{2017}\cdot5^{2017}}=\dfrac{11^2}{5}=\dfrac{121}{5}\)
\(\dfrac{15^{2016}\cdot11^{2019}}{3^{2016}\cdot55^{2017}}=\dfrac{3^{2016}\cdot5^{2016}\cdot11^{2019}}{3^{2016}\cdot11^{2017}\cdot5^{2017}}=\dfrac{11^2}{5}=\dfrac{121}{5}\)
\(\dfrac{15^{2016} . 11^{2017}}{3^{2016} . 55^{2017}}\)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+3}{2017}+\dfrac{x+4}{2016}\)
Tính:
A=2019/2018 - 2018/2017 + 2017/2016 - 2016/2015
B=1/2019 - 1/2018 + 1/2017 - 1/2016
C=1/2017 - 1/2016 + 1/2015 - 1/2014
Ko dùng máy tính hãy so sánh 2016/2017+2017/2018+2018/2019+2019/2016 với 4
A = \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)và B = \(\frac{2016+2017+2018}{2017+2018+2019}\)
so sánh A và B A=2016/2017-2017/2018+2018/2019-2019/2020 B=-1/2016-2017 - 1/2018-2019
Biết rằng \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2016}}{a_{2017}}.\) Chứng minh rằng: \(\dfrac{a_1}{a_{2017}}=\left(\dfrac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2016}\)