a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2+2m=-1\\m+1\ne-2023\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2+2m+1=0\\m\ne-2024\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(m+1\right)^2=0\\m\ne-2024\end{matrix}\right.\)
=>(m+1)2=0
=>m+1=0
=>m=-1
b: Thay x=0 và y=2024 vào (d), ta được:
\(0\left(m^2+2m\right)+m+1=2024\)
=>m+1=2024
=>m=2023
c: Tọa độ giao điểm của (d2) và (d3) là:
\(\left\{{}\begin{matrix}x-2=-4x+3\\y=x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=5\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-2=-1\end{matrix}\right.\)
Thay x=1 và y=-1 vào (d), ta được:
\(1\left(m^2+2m\right)+m+1=-1\)
=>\(m^2+3m+2=0\)
=>(m+2)(m+1)=0
=>\(\left[{}\begin{matrix}m+2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-1\end{matrix}\right.\)