Đặt \(log_2x=z\ge0\Rightarrow x=2^z\)
\(\Rightarrow2^z\left(2^y+y-1\right)=2-z.2^z\)
\(\Leftrightarrow2^y+y-1=2^{1-z}-z\)
\(\Leftrightarrow2^y+y=2^{1-z}+\left(1-z\right)\)
Xét hàm \(f\left(t\right)=2^t+t\Rightarrow f'\left(t\right)=2^t.ln2+1>0;\forall t\)
\(\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow y=1-z\)
\(\Rightarrow y=log_2x\) \(\Rightarrow x=2^y\)
\(\Rightarrow1\le2^y\le2022\Rightarrow0\le y\le10\)
Có 11 cặp thỏa mãn