\(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
`(x+y)(x^2 -xy +y^2 )`
`= x^3 -x^2 y+ xy^2 + x^2 y -xy^2 +y^3`
`= x^3 + ( -x^2 y + x^2 y ) + ( xy^2 -xy^2 ) +y^3`
`= x^3 + y^3 (đpcm)`
\(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)
`(x+y)(x^2 -xy +y^2 )`
`= x^3 -x^2 y+ xy^2 + x^2 y -xy^2 +y^3`
`= x^3 + ( -x^2 y + x^2 y ) + ( xy^2 -xy^2 ) +y^3`
`= x^3 + y^3 (đpcm)`
cmr
a, x^4-y^4=(x-y)(x^3-x^2y+xy^2+y^3)
b,x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
cho x+y=1 va xy khac 0 cmr x/y^3-y/x^3=-2(x-y)/x^2×y^2+3
CMR: (x+y)(x^3-x^2.y+xy^2+y^3)=x^4 + y^4
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
cho x^2+y^2=2 va xy=1 cmr x-x^3=y^3-y
Cho xy>0 tm:\(x^2>2;y^2>2\)
CMR:\(x^4-x^3y+x^2y^2-xy^3+y^4\text{ }\text{ }\)≥ \(x^2+y^2\)
cho x+y = 1 và xy khác 0. CMR : x/y^3-1 -y/x^3-1 + 2(x-y)/x^2y^2+3=0
(x+y).(x^4-X^3y+x^2.Y^2-xy^3+y^4)=x^5+y^5 cmr
Cho biết x-y=5 và xy=6
CMR x^3-y^3-x^2+2xy-y^2= -60
cmr :
A) (x-1) . (x^2 + x+ 1)= x^3 - 1
B) (x^3 + x^2y +xy^2 + y^3) . (x- y) = x^4 - y^4