+) \(VT=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=abc+ac^2+b^2c+bc^2+a^2b+a^2c+ab^2+abc\)
\(=a^2b+a^2c+ab^2+2abc+ac^2+b^2c+bc^2\)
+) \(VP=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2+\left(-abc\right)\)
\(=a^2b+a^2c+ab^2+2abc+ac^2+b^2c+bc^2\)
\(\Rightarrow VT=VP\) (đpcm)
Ta có : ( a+b) .(b+c) .(c+a) = (ab+ac+b2 +bc).(c+a)
= abc+a2b+ac2 +a2c+b2c+b2a +bc2+abc
=a2b+abc+ab2+a2c+ c2a+abc +abc +bc2 +b2c -abc
=ab.( a+c+b ) + ac.(a+c+b ) +bc.(a+b+c) - abc
= (a+b+c) .(ab+ac+bc) - abc (đpcm)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=\left(a+b\right)\left(bc+ab+c^2+ac\right)\)
\(=\left(a+b\right)\left(bc+ab+ac\right)+\left(a+b\right)c^2\)
\(=\left(a+b+c\right)\left(ab+bc+ac\right)-c\left(ab+bc+ac\right)+\left(a+b\right)c^2\)\(=\left(a+b+c\right)\left(ab+bc+ac\right)-abc-bc^2-ac^2+\left(a+b\right)c^2\)\(=\left(a+b+c\right)\left(ab+bc+ac\right)-abc-c^2\left(a+b\right)+\left(a+b\right)c^2\)\(=\left(a+b+c\right)\left(ab+bc+ac\right)-abc\)