\(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+2.0\)
\(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+2.\frac{a-b+b-c+c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}\)
\(A=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
\(\Rightarrow A\) là bình phương 1 số hữu tỉ