a ) Ta có : \(f\left(x\right)=4x^2-4x+3=4x^2-4x+1+2\)
\(=\left(2x-1\right)^2+2\ge2>0\forall x,x\in R\)
b ) Ta có : \(g\left(x\right)=2x-x^2-7=-x^2+2x-7\)
\(=-x^2+2x-1-8\)
\(=-\left(x^2-2x+1\right)-8\)
\(=-\left(x-1\right)^2\le-8< 0\forall x,x\in R\)
a ) Ta có : \(f\left(x\right)=4x^2-4x+3=4x^2-4x+1+2\)
\(=\left(2x-1\right)^2+2\ge2>0\forall x,x\in R\)
b ) Ta có : \(g\left(x\right)=2x-x^2-7=-x^2+2x-7\)
\(=-x^2+2x-1-8\)
\(=-\left(x^2-2x+1\right)-8\)
\(=-\left(x-1\right)^2\le-8< 0\forall x,x\in R\)
1) ghpt a)\(\left\{{}\begin{matrix}2x+\dfrac{y}{\sqrt{4x^2+1}+2x}+y^2=0\\4\left(\dfrac{x}{y}\right)^2+2\sqrt{4x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)=2\left(xy-1\right)\\4x^2+y^2+2x-y-6=0\end{matrix}\right.\)
2) tìm các số nguyên x,y thỏa mãn \(x^2+y^2-xy=x+y+2\)
3) gpt \(\sqrt{2x^2-x}=2x-x^2\)
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
Bài 1 giải hệ phương trình
a,\(\left\{\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
b,\(\left\{\begin{matrix}\left(x+y\right)^2-4x-4y=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
cho x,y,m \(\in R\) thỏa \(\left\{\begin{matrix}2x-my=m\\mx+y=\frac{3m^2+4}{m^2+4}\end{matrix}\right.\)
a)CMR \(x^2+y^2=1\)
b) tìm MIN và Max của \(x^3+y^3\)
bài 1: vs x,y,z là các số thực dương t/m xy+yz+xz=5 tìm min
\(p=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
bài 2 gpt
a)\(x^3+3x^2-3x+1=0\)
b)\(x^3-x^2-x=\frac{1}{3}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
Giải các phương trình:
a) x2+2x+4 = 3 \(\sqrt{x^3+4x}\)
b) \(\sqrt{x-1}\)+x=\(\sqrt{2\left(x-3\right)^2+2\left(x-1\right)}\) +3
c) x2+8x-5 = 4 \(\sqrt{4x^3-5x^2+5x-2}\)
d) 13 \(\sqrt{x-1}\) +9\(\sqrt{x+1}\) = 16x
Cho biểu thức:
\(P=\left(\frac{x^3+y^3}{x+y}-xy\right):\left(x\sqrt{x}-y\sqrt{x}-x\sqrt{y}+y\sqrt{y}\right)\)
a) Rút gọn P
b) Tính P biết x,y là hai nghiệm của pt \(t^2-2015t+2016=0\)
Chứng tỏ \(y=f\left(x\right)=x^2-4x+3\) nghịch biến trong khoảng \(\left(-\infty;2\right)\) và đồng biến trong khoảng \(\left(2;+\infty\right)\)