Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Thu

Chứng minh rằng \(\left(\sqrt{2006}-\sqrt{2005}\right)\)và \(\left(\sqrt{2006}+\sqrt{2005}\right)\) là hai số nghịch đảo

Hoàng Lê Bảo Ngọc
9 tháng 8 2016 lúc 19:37

Đặt \(a=\sqrt{2006}-\sqrt{2005}\) , \(b=\sqrt{2006}+\sqrt{2005}\)

Ta sẽ chứng minh \(a=\frac{1}{b}\)

Ta có : \(a=\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}\)

\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{b}\)

Vậy a và b là hai số nghịch đảo.

Ngô Tấn Trí
9 tháng 8 2016 lúc 11:14

Đầu tiên nhắc lại định nghĩ hai số nghịch đảo: Hai số được gọi là nghịch đảo nếu tích của chúng bằng 1.

Vd: $ab=1\implies $ a và b là hai số nghịch đảo của nhau và ngược lại nếu a và b  là hai số nghịch đảo của nhau thì $ab=1$.

Áp dụng vào bài toán trên ta có: $(\sqrt{2006}-\sqrt{2005})(\sqrt{2006}-\sqrt{2005})=1\implies $ hai số trên là nghịch đảo của nhau.


Các câu hỏi tương tự
Phan Ngọc Linh
Xem chi tiết
NT Ánh
Xem chi tiết
Nguyễn Thị Thương
Xem chi tiết
Toàn Trần
Xem chi tiết
Toàn Trần
Xem chi tiết
phạm thị hồng anh
Xem chi tiết
Nguyen Cao Diem Quynh
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết
satoh nguyễn
Xem chi tiết