\(\Leftrightarrow\dfrac{a^2+b^2}{2}>=\dfrac{a^2+2ab+b^2}{4}\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2>=0\)
\(\Leftrightarrow a^2-2ab+b^2>=0\)
\(\Leftrightarrow\left(a-b\right)^2>=0\)(luôn đúng)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}>=\dfrac{a^2+2ab+b^2}{4}\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2>=0\)
\(\Leftrightarrow a^2-2ab+b^2>=0\)
\(\Leftrightarrow\left(a-b\right)^2>=0\)(luôn đúng)
Chứng minh rằng: \(\left(a^2+b^2+c^2\right)\left[\left(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\right)\right]\ge\dfrac{9}{2}\)
Chứng minh rằng:
\(\left(\dfrac{a+b}{a-b}\right)^2+\left(\dfrac{b+c}{b-c}\right)^2+\left(\dfrac{c+a}{c-a}\right)^2\ge2\)
Với a, b, c là những số thực dương thỏa mãn \(\left(a+b\right)\left(b+c\right)\)\(\left(c+a\right)\)=1
Chứng minh rằng \(\dfrac{a}{b\left(b+2c\right)^2}\)+\(\dfrac{b}{c\left(c+2a\right)^2}\)+\(\dfrac{c}{a\left(a+2b\right)^2}\)≥\(\dfrac{4}{3}\)
Bài 1: a;b;c > 0
Chứng minh : \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
Bài 2: x;y;z \(\ne\) 1 và xyz = 1
Chứng minh : \(\dfrac{x^2}{\left(x-1\right)^2}+\dfrac{y^2}{\left(y-1\right)^2}+\dfrac{z^2}{\left(z-1\right)^2}\ge1\)
Chứng minh đẳng thức sau đúng với mọi giá trị thích hợp của biến
\(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
Chứng minh rằng nếu:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2;x,y\ne0\) thì \(\dfrac{a}{x}=\dfrac{b}{y}\)
Chứng minh rằng \(\left(a+b+c\right)^2-\dfrac{3}{4}\left[\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b^2\right)\right]>3\)
với a,b,c là các số thực
Đề có sai ko mọi ngừi
Cho \(a,b,c\) thỏa mãn \(\left|a\right|,\left|b\right|,\left|c\right|< 1\) và \(ab+bc+ca=2\). Chứng minh :
\(P=\dfrac{a^2}{1-b^2}+\dfrac{b^2}{1-c^2}+\dfrac{c^2}{1-a^2}\ge6\).