Câu a đề sai nha bạn
Câu b:
Gọi d=UCLN(21n+4;14n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(42n+8;42n+9)=1
Vậy: 21n+4/14n+3 là phân số tối giản
Câu a đề sai nha bạn
Câu b:
Gọi d=UCLN(21n+4;14n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(42n+8;42n+9)=1
Vậy: 21n+4/14n+3 là phân số tối giản
Chứng tỏ A là ps tối giản:
A=\(\frac{n+1}{2n+3}\)
AI làm nhanh mik tick
Chứng minh phân số sau tối giản: \(\frac{14n+3}{21n+4}\)
Chứng tỏ ps sau là ps tối giản :
2n+3/4n+8 với mọi số TN n
ai làm đúng mình sẽ tick
chứng tỏ với mọi N thuộc * thì các phân số sau là phân số tối giản
a)\(\frac{n+3}{n+4}\)
b)\(\frac{2n-1}{2n-2}\)
C)\(\frac{2n+3}{6n+8}\)
d)\(\frac{4n+1}{14n+3}\)
các bạn nào có đáp án thì giải ra cho mình đừng làm tắt nhé
Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản
chứng tỏ rằng phân số 2n+1 phần 3n+2 là phân số tối giản
Cho \(\frac{a}{b}\) là phân số tối giản. Chứng minh rawngg:\(\frac{a-2b}{b}\) cũng là phân số tối giản.
Chứng minh rằng :
\(\frac{1}{1.2.3}\)+\(\frac{1}{2.3.4}\)+\(\frac{1}{3.4.5}\)+..+\(\frac{1}{18.19.20}\)<\(\frac{1}{4}\)
Ai làm đúng mik sẽ tick
Cho A = n3+3n2+2n.
a. Chứng minh A chia hết cho 3 với mọi số nguyên n.
b. Tìm giá trị nguyên dương của n với n < 10 để A chia hết cho 15.