\(a,VT=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\\ =a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2=VP\\ b,VP=\dfrac{3\left(x+z\right)}{xy\left(x+z\right)}=\dfrac{3}{xy}=VP\)
\(a,VT=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\\ =a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2=VP\\ b,VP=\dfrac{3\left(x+z\right)}{xy\left(x+z\right)}=\dfrac{3}{xy}=VP\)
a)Cho x,y,z là ba số dương thỏa mãn x+y+z=3.Chứng minh rằng :
\(\dfrac{x}{x+\sqrt{3x+yz}}\)+\(\dfrac{y}{y+\sqrt{3y+zx}}\)+\(\dfrac{z}{z+\sqrt{3z+xy}}\)≤1
b)Chứng minh rằng: \(\dfrac{a+b+c}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3c\right)}+\sqrt{c\left(c+3a\right)}}\)≥\(\dfrac{1}{2}\)với a,b,c là các số dương
1. chứng minh rằng các hằng đẳng thức sau với điều kiện các biểu thức tồn tại:
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\)
b)\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Cho biểu thức I = \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\).\(\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn I
a) Tính giá trị của I với a = 16, b = 4
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
Rút gọn:
n) N = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2\)
o) O = \(\left(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{a-b}{\sqrt{a}-\sqrt{ }b}\right)^2\)
p) P = \(\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
q) Q = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\dfrac{x+xy}{1-xy}\)
Hãy cho bt các biểu thức dưới có phụ thuộc vào biến số hay k?
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
Cho biểu thức A = \(\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}+1\right):\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{a}-\sqrt{b}}-1\right)\)
Cho \(\sqrt{ab}+1=4.\sqrt{b}\), tìm max của biểu thức A.
1 nhân chia căn bậc hai
a/\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{0,2}\right)\)
b/ \(\left(\dfrac{3x}{2}\sqrt{\dfrac{x}{2y}}-0,4\sqrt{\dfrac{2}{xy}}+\dfrac{1}{3}\sqrt{\dfrac{xy}{2}}\right):\dfrac{4}{15}\sqrt{\dfrac{2x}{3y}}\)
2 Cộng trừ căn bậc hai
a/ \(0,1\sqrt{200}-2\sqrt{0,08}+4\sqrt{0,5}+0,4\sqrt{50}\)
b/ \(\dfrac{2}{3}x\sqrt{9x}+6x\sqrt{\dfrac{x}{4}-x^2}\sqrt{\dfrac{1}{x}}\)