Nguyễn Mai

Chứng minh \(C^k_{2001}+C^{k+1}_{2001}\le C^{1000}_{2001}+C^{1001}_{2001}\)\(\forall k\in\left[0;2000\right]\)giao Z

Nguyễn Ngọc Khanh (Team...
3 tháng 10 2020 lúc 22:22

Ta có công thức Pascal: \(C^m_n+C^{m+1}_n=C^{m+1}_{n+1}\)

Áp dụng vào biểu thức đề cho, ta được: \(C^{k+1}_{2002}\le C^{1001}_{2002}\)

Điều này đúng với mọi (k+1) đi từ 1 đến 2001 (Ta có thể dễ dàng nhận ra điều này khi nhìn vào tam giác Pascal để nhận xét rằng hệ số ngay chính giữa luôn lớn nhất)

Chứng minh: Xét \(C^{k+1}_{2002}-C^k_{2002}=\frac{2002!}{\left(2002-k-1\right)!.\left(k+1\right)!}-\frac{2002!}{\left(2002-k!\right).k!}\)

\(=\frac{2002!.\left(2002-k\right)}{\left(2002-k\right)!.\left(k+1\right)!}-\frac{2002!.\left(k+1\right)}{\left(2002-k\right)!.\left(k+1\right)!}=\frac{2002!}{\left(2002-k\right)!.\left(k+1!\right)}\left(2001-2k\right)\)

+) \(k< 1000,5\Rightarrow2001-2k>0\Rightarrow C^{k+1}_{2002}-C^k_{2002}>0\Rightarrow C^{k+1}_{2002}>C^k_{2002}\)

+) \(k>1000,5\Rightarrow2001-2k< 0\Rightarrow C^{k+1}_{2002}-C^k_{2002}< 0\Rightarrow C^{k+1}_{2002}< C^k_{2002}\)

Vậy dãy số gồm các số hạng có dạng \(C_{2002}^{k+1}\)sẽ tăng dần khi k đi từ 1 tới 1001,5 và giảm dần khi k đi từ 1001,5 tới 2001.

Vậy \(C_{2002}^{k+1}\)lớn nhất khi \(k+1=1001\)---> ĐPCM

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Song Phương
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
títtt
Xem chi tiết
Hoàng Nguyên Long
Xem chi tiết
Mai Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết