a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2\cdot a\cdot b+b^2\)
\(=a^2-2ab+b^2\)
\(=a^2-4ab+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)
⇒ Đpcm
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+0+2y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=VP\)
⇒ Đpcm
a: (a-b)^2
=a^2-2ab+b^2
=a^2+2ab+b^2-4ab
=(a+b)^2-4ab
b: (x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)