chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\) - cot\(\left(\dfrac{\pi}{2}-x\right)\) . tan\(\left(\dfrac{\pi}{2}-x\right)\) = \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = \(tan2x\)
chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\)- cot\(\left(\dfrac{\pi}{2}-x\right)\).tan\(\left(\dfrac{\pi}{2}-x\right)\)= \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = tan\(2x\)
chứng minh rằng
a) tanx(cot\(^2\)x - 1) = cotx(1 - tan\(^2\)x)
b) tan\(^2\)x - sin\(^2\)x = tan\(^2\)x.sin\(^2\)x
c) \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}\) - cos\(^2\)x = - cos\(^4\)x
giải các phương trình sau :
1. sin( x+\(\pi\)/4)=2/3
2.cos2x-5sinx-3=0
3.cos3x=sin2x
4.cos3x=-\(\sqrt{ }\)3 với -\(\pi\)/2<x<0
5.4sin\(^4\)x + 12cos\(^2\)x=7
6.cot(x-1)=(cos2x)/(1+tanx) + sin\(^2\)x - 1/2sin2x
7.sin\(^2\)3x-cos\(^2\)4x=sin\(^2\)5x-cos\(^2\)6x
chứng minh đẳng thức lượng giác
a) 1 + \(tan^2\)x = \(\dfrac{1}{cos^2x}\)
b) tan\(x\) + cot\(x\) = \(\dfrac{1}{sinx.cosx}\)
giải phương trình
a) \(cot\left(\dfrac{1}{2}x+\dfrac{\pi}{4}\right)=-1\)
b) \(cot4x=\dfrac{1}{\sqrt{3}}\)
c) \(cot\)(x + 15 độ) = cot60 độ
d) cot(30 độ - 2x) = cot 10 độ
giải phương trình
a) \(sinx=sin\dfrac{\pi}{4}\)
b) \(cos2x=cosx\)
c) \(tan\left(x-\dfrac{\pi}{3}\right)=\sqrt{3}\)
d) \(cot\left(2x+\dfrac{\pi}{6}\right)=cot\dfrac{\pi}{4}\)
Giải phương trình:
`cot x-1=[cos 2x]/[1+tan x]+sin^2 x-1/2sin 2x`
Tìm số họ nghiệm của phương trình cot (sin x) = 1
A. 1.
B. 2.
C. 3.
D. 4.
Đâyyioayhòi
\(y=cot\left(3x\right)\Rightarrow y'=-3.\dfrac{1}{sim^23x}=-3\left(1+cot^23x\right)\)
\(=-3-3.cot^23x\)